Turbulent mixing in the Indonesian Seas – Modeling and observation

Taira Nagai (Japan Fisheries Research and Education Agency) nagaitaira@affrc.go.jp

''Tidal mixing' is thought to be a major factor contributing to the SST/water-mass transformation in the IS.

Tidal mixing in the Indonesian Seas (IS)

Tidal mixing induced by breaking of internal tides is expected to be **much enhanced in the IS**.

Implying the importance of tidal mixing in reproducing the water-mass transformation in the IS

Previous studies on estimates of tidal mixing in the IS

Blue : Model based study, Pink : Observation based study

Ffield and Gordon (1992)	Simple 1-D vertical diffusion model	$K_V = 1 \sim 2 \times 10^{-4} \text{ m}^2/\text{s}$ (in area-average)
Alford et al. (1999)	Direct microstructure measurements (in the central part of Banda Sea)	K _v ~ 0.1 cm²/s (local value)
Hatayama (2004)	2-D nonhydrostatic model (for Makassar Strait)	K _v reaches 6×10 ⁻³ m²/s above the Dewakang Sill
Koch-Larrouy et al. (2007)	Based on St. Laurent et al.'s (2002) tidal mixing parameterization	Obtained a map of K _V (K _V ~1×10 ⁻⁴ m ² /s in area-average)
Robertson (2010)	3-D numerical model	K _v ~6×10 ⁻⁴ m²/s (in area-average)
Koch-Larrouy et al. (2015)	Direct microstructure measurements	K_v is highly enhanced in the
Bouruet-Aubertot et al. (2018)	(Halmahera/Banda Seas, Ombai Strait)	Halmahera/Ombai Straits
Nagai and Hibiya (2015)	High resolution 3-D numerical model	Obtained a map of K _V (K _V ~1×10 ⁻⁴ m ² /s in area-average)
Purwandana et al. (2020)	Thorpe scale method + Historical CTD dataset	Obtained a map of K _V (consistent with Nagai's work)
ALL IN	Kartadikaria et al. (2011), Cuypers et al. (2017), Nugroho et al. (2018) and others

Effects of tidal mixing in the IS on large-scale oceanic/atmospheric circulation

A State of the second sec		CHARTER AND STRUCTURE STATISTICS
Jochum and Potemra (2008)	Air/sea coupled model + K_v simply enhanced in the IS ($K_v = 1 \times 10^{-4} \text{ m}^2/\text{s}$)	Local/remote effects of tidal mixing are suggested
Koch-Larrouy et al. (2010) Sprintall et al. (2014)	Air/sea coupled model + tidal mixing estimated by Koch-Larrouy et al. (2007)	Local/remote effects of tidal mixing are suggested
Sasaki et al. (2018)	OGCM + Tidal mixing parameterization (based on St. Laurent et al. (2002))	Tidal mixing in the IS increases the mean ITF transport (0.88 Sv)

Blue : Ocean model, Pink : Air/sea coupled model

However ...

"Idealized tidal mixing" or "tidal mixing parameterizations" were used in the model calculation
Physical processes of the tidal mixing effects were not well discussed

[Objectives of my research]

- \checkmark To make a more plausible estimate of tidal mixing intensity in the IS.
- To discuss the physical mechanisms of tidal mixing effects on the ocean states of the IS.

- ✓ High-resolution ($\Delta x \sim 1$ km) 3-D baroclinic tide model.
- ✓ Energy dissipation (ϵ) of M₂ internal tides => **Distribution of vertical diffusivity (K_V) is estimated.**

- ✓ High-resolution ($\Delta x \sim 1$ km) 3-D baroclinic tide model.
- \checkmark Energy dissipation (ε) of M₂ internal tides => **Distribution of vertical diffusivity (K_V) is estimated.**

- ✓ High-resolution ($\Delta x \sim 1$ km) 3-D baroclinic tide model.
- ✓ Energy dissipation (ϵ) of M₂ internal tides => **Distribution of vertical diffusivity (K_V) is estimated.**

- "Mixing hotspots" are localized in the narrow tidal straits of the archipelago (e.g., Lombok Straits), in which energetic internal tides are generated by strong barotropic tidal currents.
- ✓ Mixing is also enhanced on the pathway of internal solitary waves, which are observed in many locations
- ✓ Much different distribution compared to Koch-Larrouy et al.'s (2007) parameterization
- ✓ (Probably) More realistic map of vertical diffusivity is obtained.

- ✓ High-resolution ($\Delta x \sim 1$ km) 3-D baroclinic tide model.
- \checkmark Energy dissipation (ε) of M₂ internal tides => **Distribution of vertical diffusivity (K_V) is estimated.**

- ✓ "Mixing hotspots" are localized in the narrow tidal straits of the archipelago (e.g., Lombok Straits), in which energetic internal tides are generated by strong barotropic tidal currents.
- ✓ Mixing is also enhanced on the pathway of internal solitary waves, which are observed in many locations
- ✓ Much different distribution compared to Koch-Larrouy et al.'s (2007) parameterization
- ✓ (Probably) More realistic map of vertical diffusivity is obtained.

Previous microstructure measurements in the IS

In the Indonesian Seas, direct microstructure measurements are **largely lacking**. Microstructure measurements have been carried out only in **6 stations**.

Color : Depth-integrated energy dissipation rates (ε)

10S

115E

Scatter plots (Observation vs Numerical model)

 10^{-3}

 $\int \varepsilon_{\text{MDL}} \, \mathrm{d}z \simeq 3 \int \varepsilon_{\text{OBS}} \, \mathrm{d}z$

Some previous studies (Koch-Larrouy et al.; 2010, Kida and Wijffels, 2012; Sprintall et al., 2014) showed that idealized or simply parameterized tidal mixing cools the SST in the IS

=> However, physical processes were not well investigated.

Some previous studies (Koch-Larrouy et al.; 2010, Kida and Wijffels, 2012; Sprintall et al., 2014) showed that idealized or simply parameterized tidal mixing cools the SST in the IS

=> However, physical processes were not well investigated.

- Incorporated the map of K_V (Nagai and Hibiya, 2015) into a regional ocean model
- Investigated the effects of tidal mixing on the SST around the IS
- Discussed the corresponding physical processes

9S

20 day (z = 40m)

118İ

Kel

121E

122E

East wind

120E

119E

along the southern (or northern) coast of the LSIs.

Finally, SST cooling occurs only in the north (or south) of the LSIs.

Summary

 Tidal mixing in the Indonesian Seas is thought to play an important role in changing oceanic/ atmospheric circulation.

Estimates of tidal mixing

- \checkmark Area-averaged vertical diffusivity is of the order of 10⁻⁴ m²/s
- Mixing hotspots are localized in narrow tidal straits (e.g., Lombok, Ombai, Manipa Straits)
- Internal solitary waves might play a role in distributing the turbulence energy in the IS
- Numerical model tends to overestimate the mixing intensity

Effects of tidal mixing

- Tidal mixing in the Indonesian Seas affects not only the local phenomena, but also the remote phenomena (e.g., El-Nino region).
- Mixing hotspots in narrow tidal straits affect the SSTs in the Indonesian Seas through Ekman transport.

Key conclusion

- Mixing hotspots in narrow (< 10km) tidal straits may have a large impact on regulating SST in the Indonesian Seas, although they are hardly resolved in the existing OGCMs.
- For an accurate prediction of oceanic/atmospheric phenomena related to the Indonesian Seas, resolving the narrow straits in OGCMs might be important.

Future problem

Estimates of tidal mixing

- Mixing scheme in numerical models should be developed (Currently, there is no "best" scheme that correctly models internal wave breaking.)
- ✓ Tidal mixing caused by other tidal constituents (S2, K1, O1)
- Effects of mean flow (the ITF) on the mixing intensity/distribution (Nugroho et al. (2018) conducted the numerical simulation, but grid resolution was low (~10km)...)
- Mixing processes of internal solitary waves (which are not observed in the IS)

Effects of tidal mixing

- Physical mechanisms of remote effects of tidal mixing in the Indonesian Seas are still unknown
 - => This should be discussed (focusing on the roles of atmospheric/oceanic phenomena).

(Koch-Larrouy et al., 2010) Differences in SST/rainfall between coupled simulations 'with' and 'without' tidal mixing

